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Modelling the lethargic crab disease
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The lethargic crab disease (LCD) is an emergent infirmity that has decimated native populations of the
mangrove land crab (Ucides cordatus, Decapoda: Ocypodidae) along the Brazilian coast. Several potential
etiological agents have been linked with LCD, but only in 2005 was it proved that it is caused by an
ascomycete fungus. This is the first attempt to develop a mathematical model to describe the epidemiological
dynamics of LCD. The model presents four possible scenarios, namely, the trivial equilibrium, the disease-
free equilibrium, endemic equilibrium, and limit cycles arising from a Hopf bifurcation. The threshold
values depend on the basic reproductive number of crabs and fungi, and on the infection rate. These
scenarios depend on both the biological assumptions and the temporal evolution of the disease. Numerical
simulations corroborate the analytical results and illustrate the different temporal dynamics of the crab and
fungus populations.
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1. Introduction

The mangrove land crab, Ucides cordatus (Decapoda: Ocypodidae), is a widely distributed species
across the west Atlantic coast, from Florida (USA) to Santa Catarina (Brazil) [12]. U. cordatus
is also an ecologically important species, contributing to a variety of ecosystem processes such
as nutrient cycling and as a key link in local food webs [14,15,20]. Moreover, it is an important
component in the economy of several underprivileged communities that depend on it for their
subsistence and as a source of income. For example, 38% of the households of 21 communities
located around the estuary of the Caeté River (Pará State, Northern Brazil) rely on the collection
and commercialization of U. cordatus [6], leading to its overfishing in some areas [5,11].

Beginning in 1997, massive mortalities of the mangrove land crab were reported in several
locations in Northeastern Brazil, causing severe depressions in local stocks. It has been estimated
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that collection rates have decreased by as much as 84% in some areas. Crabs have been observed
to share several common symptoms during these mortality events, such as lethargy, poor motor
control and inability to return to the upright position when turned upside down. Hence, this
pathology has been called lethargic crab disease (LCD) [2].After starting in Recife (Pernambuco-
Brazil), the disease has spread preferentially in the North-South direction and currently it has been
found in 17 estuaries in the coastal states of Brazil [21].

Several potential etiological agents have been informally linked with LCD, including pro-
tists, fungi, bacteria, introduction of exotic metazoans and chemical poisoning. In some regions,
the disease has been associated with sugar-cane cultures, shrimp farming, oil prospection, and
the wood industry. However, the first scientific study on LCD has only been published nearly a
decade after the disease was first recorded, in which molecular and histopathological evidence
indicated that LCD was caused by an ascomycete fungus [2]. Since then, considerable effort
has been devoted to elucidate the biology and epidemiology of the disease, including exten-
sive histopathological studies that corroborate its etiology [3]. In addition, experiments carried
out to date were able to show that: (1) artificially infecting healthy crabs with fungi isolated
from sick individuals was sufficient to generate LCD symptoms; (2) the LCD fungus can be
reisolated from experimentally infected crabs that showed LCD symptoms, thus fulfilling all of
Koch’s postulates; (3) experimental inoculation of filtered hemolymph of field-collected indi-
viduals failed to generate LCD symptoms, thus ruling out the possibility of a viral etiology;
and (4) the fungal conidia are able to withstand high salinity levels, thus providing a possible
route of infection of populations in different estuaries (R.O. Ribeiro, W.A. Boeger, A. Ostrensky,
M.R. Pie, personal communication on unpublished results). However, several aspects of the dis-
ease remain unaddressed. In particular, the available epidemiological data show evidence of a
cyclic disease which starts with an epidemic wave characterized by high observed incidence of
mortality, followed by waves with decreasing observed incidence of mortality, until the disease
disappears.

The apparent seasonality and discontinuity of the mortality events of LCD in northern Brazil
could be associated to variations of the fungus pathogenicity. But, since the presence of the
fungus is detected in all the events, some biologists consider that such variations are not sufficient
to explain the disease periodicity. On the other hand, epidemiological analysis revealed that
during the intervals between the mortality events (winter), the fungus was found just in a few
asymptomatic crabs, and it was not found in the surrounding environment such as soil or leaves,
nor in other species such as shrimp, or oysters [18]. Moreover, since most of the mortality events
coincide with the crabs’ mating season, some hypotheses suggest that variations of the crab
resistance (due to stress derived of mating) are responsible for the seasonality of the disease. An
alternative explanation considers that the periodicity of the mortality events depends upon the
interplay of the crab resistance and fungus virulence.

To explore the long-term dynamics of LCD, and give some biological insights on the periodic
nature of the disease, we formulate a mathematical model for the LCD transmission within
mangrove areas. We assume that the disease spreads in the crab population by contact with fungus
according to the mass action law, and fungus population grows at a rate proportional to the number
of infected crabs. The model structure and analysis is similar to others compartmental models
for epidemiological and immunological phenomena [1,13,19,22]. Analysis of the model reveals
that the disease disappears below a threshold depending on the infection rate, recovery rate, and
other demographic parameters. Above that threshold, the system can evolve to an asymptotically
stable endemic state, or can exhibit an oscillatory behaviour. We use numerical simulations to
analyse the model dynamics for different parameter values. The paper is organized as follows.
Section 2 presents the model formulation with the biological assumptions. Analysis of the model
is given in Section 3. Numerical simulations are reported in Section 4. Finally, Section 5 presents
the conclusions and perspectives.
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2. Model formulation

Let S(t) and I(t) denote the adult crab populations that are either susceptible or infected at time
t, respectively. The fungus population is denoted by F(t). The assumptions of the model are the
following.

The susceptible crab population, S(t), is increased by births of individuals (assumed susceptible)
into the population. The net fecundity rate per female crab population is proportional to their
density, but it is also regulated by a carrying capacity related to the amount of available nutrients
and space. In this model, the per capita fecundity rate is given by φ(1 − (S(t)/C)), where C is the
carrying capacity and φ is the intrinsic fecundity rate. Susceptible crab population decreases by
natural death at a per capita rate μ, and at a rate μc as a result of been captured and commercialized
by crab pickers. In the presence of the disease, the susceptible crab population also increases by
the return of the infected crabs that do not develop the disease and become susceptible again at a
per capita rate γ , and decreases by infection at a rate βSF.

The infected crab population is generated at a rate βSF, and is diminished by natural death (at
a per capita rate μ), recovery (at a per capita rate γ ) and disease-induced mortality (at a per capita
rate α). Infected crabs normally die minutes after being captured by the crab pickers and during
disease epidemic (which takes on average one week) crabs are not collected [18]. Therefore, we
are not considering additional mortality in this population as a result of crab capture. Also, since
the timescale related to the disease is several orders of magnitude less than the crabs’ lifetime,
we assume that infected crabs do not contribute to crowding.

The fungus population reproduces inside the body of the infected crabs like a parasite. These
infected crabs live, on average, 1/α days, and during this time each one produce σ amount of
fungus. Finally, the fungus population decreases by natural death at a per capita rate μF .

Some remarks can be made about the model assumptions. First, as arthropods lack an adaptive
immune system, their body defence enables extensive clotting, nodule formation, and encapsu-
lation. Because the innate immune system does not confer long lasting or protective immunity
to the host, we assumed recovery without immunity. Second, the fungus that cause the LCD has
an adaptive advantage to infect the crabs, since the entire biological cycle, which include sexual
and asexual reproduction, occurs inside the crabs [18]. When the infected crabs die, the fungus
is released into the environment, therefore, we assume that fungus growth is proportional to the
number of dead infected crabs.

According to the assumptions above, the model is given by the following system of non-linear
ordinary differential equations:

dS(t)

dt
= φS(t)

(
1 − S(t)

C

)
− (μ + μc)S(t) − βS(t)F (t) + γ I (t),

dI (t)

dt
= βS(t)F (t) − (γ + μ + α)I (t), (1)

dF(t)

dt
= σαI (t) − μF F(t),

with (S(t), I (t), F (t)) ∈ R
3+. It is easy to show that each state variable remains non-negative for

all non-negative initial conditions (that is, all the state variables and parameters of the model are
non-negative for all t ≥ 0).

It should be mentioned that the model above does not take into account the possibility of
crab migration. This simplification leaves the model to be easily treated analytically and it is a
reasonable approach, as we are looking at the dynamics of the disease only in the crab population,
and not its dispersion.
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3. Mathematical analysis of the model

In this section the model will be analysed to gain insight into its dynamical features.

3.1. Equilibrium points

Equilibria for system (1) are found by setting the right sides equal to zero. It can be seen read-
ily that the model accepts three equilibria. The first one is the trivial equilibrium E0 = (0, 0, 0)
corresponding to the state where crabs and fungi are absent.

The second equilibrium is the disease-free equilibrium E1 = (S̄, 0, 0), where

S̄ =
(

1 − a

φ

)
C, (2)

with a =μ+μc. This equilibrium has biological sense if and only if RC =φ/a > 1. In demographic
terms, RC is the basic reproductive number of the crab population (equivalent to basic reproductive
number in the epidemiological context). For crabs to maintain themselves in nature, the condition
RC > 1 is necessary.

Finally, the third equilibrium is the endemic equilibrium E2 = (Ŝ, Î , F̂ ), corresponding to the
state where the disease is always present. The coordinates of E2 are given by

Ŝ = bμF

βσα
,

F̂ = σα

μF

Î , (3)

Î = Ŝ

μ + α

(
(φ − a) − φŜ

C

)
,

where b =γ +μ+α. From the equations above it is clear that the endemic equilibrium, E2, is
biologically feasible if and only if

(φ − a)C

φ
> Ŝ, (4)

which is equivalent to

RF = βσα(φ − a)C

bμF φ
> 1. (5)

The number RF can be interpreted as the basic reproductive number of the fungus population [9].
This can be seen as follows: the average number of crabs infected per fungus in a totally susceptible
population, S̄, is βS̄/μF . Each infected crab produces in average σα/b amount of fungi. Therefore,
the product (βS̄/μF ) × (σα/b) is the number of fungi produced by a single fungus. For fungus
to maintain themselves in nature, the condition RF > 1 is necessary.

3.2. Stability of the trivial equilibrium E0

The eigenvalues of the local linearization of system (1) around E0 are a(RC − 1), − b, and −μF .
All of them are negative if and only if RC < 1. Therefore, E0 is locally asymptotically stable if
RC < 1, and unstable if RC > 1. The global stability below the threshold can be proved using a
Lyapunov function (see Appendix 1).
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3.3. Stability of the disease-free equilibrium E1

When RC > 1 the trivial equilibrium becomes unstable and E1 emerges in the feasible region. The
stability of E1 is governed by the eigenvalues of the linearized system of Equation (1) around E1.
These eigenvalues are − a(RC − 1) < 0, and the roots of the quadratic polynomial

p(λ) = λ2 + (b + μF )λ + bμF (1 − RF ). (6)

Recall that a quadratic polynomial λ2 + a1λ+ a2 has roots with negative real part if and only
if a1 > 0, and a2 > 0. For the polynomial (6) a1 = b +μF > 0, and a2 = bμF(1 − RF) > 0 if and
only if RF < 1. Therefore, E1 is locally asymptotically stable when RF < 1, which means that the
fungus population will extinguish and consequently the disease will die out, and unstable when
RF > 1, which means that the fungus is able to invade the crab population and to reproduce. Global
stability of E1 can be shown under a more restrictive condition using a Lyapunov function in a
similar way as in the proof for the trivial equilibrium (see Appendix 2).

3.4. Stability of the endemic equilibrium and Hopf bifurcation

For RF > 1 the Jacobian at the endemic equilibrium, E2, is given by

J (E2) =
⎛
⎜⎝φ − 2φ

C
Ŝ − βF̂ − a γ −βŜ

βF̂ −b βŜ

0 σα −μF

⎞
⎟⎠ .

Substituting the values of Ŝ, Î , and F̂ given by Equation (3) in J(E2), and after some calculations,
the characteristic equation is given by

r(λ) = λ3 + A1λ
2 + A2λ + A3 = 0, (7)

where

A1 = γ
(φ − a)

μ + α

(RF − 1)

RF

+ φ − a

RF

+ b + μF ,

A2 = μF γ
(φ − a)

μ + α

(RF − 1)

RF

+ (b + μF )
(φ − a)

RF

,

A3 = μF b(φ − a)
(RF − 1)

RF

.

According to the Routh–Hurwitz criteria for a polynomial of degree three, the necessary and
sufficient conditions for all eigenvalues of J(E2) have negative real parts as follows:

(1) Ai > 0, i = 1, 2, 3, and
(2) D =A1A2 −A3 > 0.

Since RC > 1 and RF > 1, the first condition is satisfied for Ai given in Equation (7). Thus,
the stability of the endemic equilibrium depends on the sign of D. When D > 0, the endemic
equilibrium is locally asymptotically stable; when D < 0, it is unstable. When D = 0, there are
a pair of purely imaginary eigenvalues, ±i

√
A2, and a negative real eigenvalue, −A1; therefore,

for suitable parameter values, a Hopf bifurcation can occur for a particular value of RF , which
implies that it can be a periodic solution around the endemic equilibrium [7].
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To explore the conditions for Hopf bifurcation, we put

Y = b(φ − a)

μ + α

(
RF − 1

RF

)
. (8)

After some algebraic calculations it is shown that D is a quadratic function of Y :

D(Y) = B1Y
2 + B2Y + B3 (9)

with

B1 = [μF γ − (μ + α)(b + μF )][γ − μ − α)]
b2

,

B2 = [b + μF + φ − a][μF γ − (μ + α)(b + μF )]
b

+ (γ − μ − α)(b + μF )(φ − a)

b
− μF (μ + α),

B3 = (b + μF + φ − a)(b + μF )(φ − a).

Then, a Hopf bifurcation occurs for values of Y that are roots of Equation (9). The conditions
RC > 1, RF > 1 guarantee that B3 > 0, and Y > 0. For algebraic convenience in the following we
will assume

α + μ − γ > 0. (10)

We remark that this condition agrees with the biological observed parameters. It can be seen that
in this case B1 > 0, and B2 < 0; therefore, by the Descartes rule, Equation (9) can have two positive
roots or none. Since Y depends on β, but Bi does not, we choose β as the bifurcation parameter.
Thus, we look for a threshold β∗ depending on the rest of the parameters such that D(Y∗) = 0,
where Y∗ =Y (β∗). Substituting RF in Equation (8) we see that

Y (β) = b(φ − a)

α + μ

[
1 − bμF φ

βσαC(φ − a)

]
, (11)

and from this it follows that Y (β) increases monotonically from 0 to Y∞ as β increases from 0 to
∞, where

Y∞ = b(φ − a)

μ + α
. (12)

If D(Y∞) < 0 there is a unique root, Y∗, of D(Y ) in the interval (0, Y∞), since D(0) = B3 > 0.
Substituting Y∞ in Equation (9), and after some manipulations, we obtain

D(Y∞) = μF γ (φ − a)

μ + α

(
γ (φ − a)

μ + α
+ μF − b(μ + α − γ )

γ

)
. (13)

Since φ − a > 0, D(Y∞) < 0 if the expression inside the parenthesis is negative, which is
equivalent to the condition

γ (φ − a)

μ + α
+ μF <

b(μ + α − γ )

γ
. (14)
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From Equation (11), and the formula for the roots of a quadratic equation, we obtain an explicit
expression for the threshold condition β∗ in terms of the other seven parameters in the parameter
space of dimension eight:

β∗(C, φ, γ, α, μ, μC, μF ) = 2B1μF b2φ

σαC(2B1(φ − a)b − (μ + α)(−B2 −
√

B2
2 − 4B1B3))

, (15)

where B1, B2, and B3 are given by Equation (9). Therefore, assuming condition (14), on the
neutral surface given by Equation (15), the characteristic roots of Equation (7) are a pair of purely
imaginary roots, and a negative real root.

Now, denote by ν(β) ± iω(β), and η(β) the characteristic roots of Equation (7). To have Hopf
bifurcation, it remains to show that the transversality condition (dν(β))/(dβ)|β=β∗ �= 0 holds [7].
For this end, we substitute ν + iω in the characteristic equation (7), and separate the real and
imaginary parts to obtain

ν3 − 3νω2 + A1ν
2 − A1ω

2 + A2ν + A3 = 0,

3ν2w − ω3 + 2A1νω + A2ω = 0. (16)

Taking derivatives of Equation (16) with respect to β we obtain the system

c11
∂ν

∂β
+ c12

∂ω

∂β
= d1,

c21
∂ν

∂β
+ c22

∂ω

∂β
= d2, (17)

where

c11 = 3ν2 − 3ω2 + 2A1ν + A2,

c12 = −6νω − 2A1ω,

c21 = 6νω + 2A1ω, (18)

c22 = 3ν2 − 3ω2 + 2A1ν + A2,

d1 = −
[
∂A1

∂β
(ν2 − ω2) + ∂A2

∂β
ν + ∂A3

∂β

]
,

d2 = −
[

2
∂A1

∂β
νω + ∂A2

∂β
ω

]
.

The partial derivatives of the coefficients Ai given in Equation (7) are

∂A1

∂β
= μF φ(γ − μ − α)

σα(φ − a)C

Y∞
β2

,

∂A2

∂β
= μF φ(μF (γ − μ − α) − (μ + α)b)

σα(φ − a)C

Y∞
β2

, (19)

∂A3

∂β
= bμ2

F φ(μ + α)

σα(φ − a)C

Y∞
β2

.
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Recalling that for β∗ the complex eigenvalues of Equation (7) are purely imaginary, the derivative
(∂ν(β∗))/(∂β) is obtained from Equations (17)–(19) evaluated at ν = 0:

∂ν(β∗)
∂β

= d1c22 − d2c12

c11c22 − c12c21
|ν=0

= −3∂A1∂βω4 + (A2(∂A1/∂β) + 3(∂A3/∂β) − 2A1(∂A2/∂β)) ω2 − A2(∂A3/∂β)

(A2 − 3ω2)2 + 4A2
1ω

2
.

(20)

Substituting ω = √
A2 in Equation (20), and using the relation A1A2 =A3, we obtain

∂ν(β∗)
∂β

= −2(∂A1/∂β)A2
2 + 2(∂A3/∂β)A2 − 2A3(∂A2/∂β)

4A2(A2 + A2
1)

. (21)

The hypothesis γ <μ+α implies (∂A1/∂β) < 0 and (∂A2/∂β) < 0. Since (∂A3/∂β) > 0 then
(∂ν(β∗)/∂β) > 0, and the transversality condition is proved. Thus, we have established the
following theorem.

Theorem 3.1 Assume RC > 1, RF > 1, and μ+α −γ > 0. Then, under condition (14), system
(1) has a Hopf bifurcation. Hence, there are periodic solutions for β∗ given by Equation (15).

4. Numerical results

The dynamics of system (1) depends upon eight parameters, and it was shown in Section 3 that
it can have four possible asymptotic behaviours: namely, the trivial equilibrium, the disease-
free equilibrium, the endemic equilibrium and limit cycles as a result of threshold conditions.
Nevertheless, some of the threshold conditions are rather complicated, and it is not easy to realize
the solution dependence on the parameters. For this reason, in this section we present numerical
simulations to illustrate the behaviour of solutions for a range of parameter values given in Table 1.
The results were obtained using Maple procedures and Runge–Kutta of order 4.

Most of the parameters are related to real data collected in the field and experiments. In all
simulations μF , φ, C, and μ are kept fixed, and their values are μF = 0.1, φ = 0.4, C = 200, and
μ= 0.0006, respectively. The other parameters have been varied to obtain the stability regions in
the corresponding parameter space.We illustrate the different scenarios in several two-dimensional
parameter spaces. In all figures, the solid line corresponds to the values of the parameters
where Hopf bifurcation occurs, and the dashed line to the values where a bifurcation from the

Table 1. Parameter description and range.

Parameter Description Values

φ Crabs intrinsic fecundity rate 0.15–0.4 days−1 (estimated)
C Environmental carrying capacity 200 (assumed)
μc Capture crabs rates by crabs collectors 0–0.5 days−1 (estimated)
μ Per capita natural death rate 0.00025–0.0006 days−1 (estimated)
β Infection rate between susceptible crabs and fungus 0.001–0.2 days−1(assumed)
α Per capita disease-induced mortality rate 0.002–0.12 days−1 (estimated)
γ Per capita recovery rate of infected crabs 0.01–0.1 days−1 (estimated)
σ Growth rate of fungus on the body of infected crabs 0.01–1.4 days−1 (assumed)
μF Per capita natural fungus death 0.1 days−1(assumed)

Some data are taken from [18].
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Figure 1. Stability region in the (β − σ ) parameter space. Region I corresponds to the disease-free equilibrium, region
II to the endemic equilibrium, and region III to limit cycles. The other parameters are fixed and given by γ = 0.01, μc = 0
and α = 0.07.

disease-free to endemic equilibrium takes place. Regions I, II, and III correspond to the stability
regions of the disease-free equilibrium, the endemic equilibrium, and limit cycles, respectively.

Figure 1 illustrates the stability regions in the (β −σ ) parameter space. In these simulations
γ = 0.01, μc = 0, and α = 0.07. The solid line corresponds to the critical values of β as a function
of σ , where the dynamics of the endemic state goes through a Hopf bifurcation. We observe that
above a minimum infection rate (β ∼ 0.74) the disease cannot be eradicated, and the infected crab
population either approaches the endemic equilibrium, or oscillates. The probability of periodic
behaviour increases when the reproduction rate σ increases, and decreases as σ decreases. It is
interesting to note that below a critical value of σ there are no limit cycles and solutions approach
either the endemic or the disease-free equilibrium.

In Figure 2 the stability regions are shown in the (β −α) parameter space with σ = 1.4, γ , and
μc as in Figure 1. Here, the Hopf bifurcation curve quickly decreases to a minimum for small

0 0.2 0.4
 α

0

0.003

0.006

 β

I

II

III

II

Figure 2. Stability region in the (β − α) parameter space. Region I corresponds to the disease-free equilibrium, region
II to the endemic equilibrium, and region III to limit cycles. The other parameters are fixed and given by γ = 0.01, σ = 1.4
and μc = 0.
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values of the disease-induced mortality rate, α, and thereafter increases slowly as α increases. The
minimum occurs at approximately α = 0.1 and corresponds to the maximum-infected population
size. Periodic solutions are not possible to the left of the dotted line α = 0.04; the disease-free
equilibrium is stable below the dashed line, and unstable above it, where the endemic equilibrium
exists and is stable. Since α = τ−1, where τ is the infectious period, large or small values of
τ favors an endemic behaviour. Finally, it is interesting to observe that the minimum infection
rate above which the infection cannot be eradicated is several orders of magnitude less than the
corresponding one in Figure 1. This indicates that α is a determining factor for the establishment
of the disease.

The stability regions in the (β −γ ) parameter space are given in Figure 3. The other parameters
are the same as in previous figures.The solid line corresponds to the critical values ofβ as a function
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 γ 
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III
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I

Figure 3. Stability region in the (β − γ ) parameter space. Region I corresponds to the disease-free equilibrium, region
II to the endemic equilibrium, and region III to limit cycles. The other parameters are fixed and given by σ = 1.4, μc = 0
and α = 0.07.
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Figure 4. Stability region in the (β − μc) parameter space. Region I corresponds to the disease-free equilibrium, region
II to the endemic equilibrium, and region III to limit cycles. The other parameters are fixed and given by γ = 0.01, σ = 1.4
and α = 0.07.
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of γ where a Hopf bifurcation occurs. As in the previous case, the disease-free equilibrium region
is very small. For values of γ to the right of the dotted line (γ > 0.03), periodic solutions are
not possible, and solutions approach the endemic equilibrium or the disease-free equilibrium,
although the probability of the second case is very small.

Finally, the bifurcation diagram in terms of (β −μc) is illustrated in Figure 4. The values of the
other parameters are as in the previous figures. In this scenario, the threshold curves that separate
the stability regions are asymptotic to the line μc = 0.4. To the right of this line RC < 1 implying
that both populations go to extinction. We note, that as μc increases, the stability region of the
endemic equilibrium increases.
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Figure 5. Period of disease oscillation as a function of β. The other parameters are μF = 0.1, φ = 0.15, γ = 0.01,
C = 200, μ = 0.0006, σ = 0.7, μc = 0.1 and α = 0.07. The Hopf bifurcation appears for β > 0.012.
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Figure 6. Time evolution of the crab and fungus populations for the stability regions shown in Figure 1. The continuous,
dashed and dotted lines are, respectively, the population of susceptible crabs, infected crabs and fungus. (a) Region
I: convergence to disease-free equilibrium (β = 0.02, RF = 0.87). (b) Region II: convergence to endemic equilibrium
(β = 0.05, RF = 2.17). (c) Region III: convergence to a limit cycle (β = 0.29, RF = 12.57).
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Figure 5 shows the frequency of the disease bursts as a function of the infection rate β. The
Hopf bifurcation appears for β > 0.012.As β increases, the time period between successive disease
burst increases. Due to the great mortality of the infectious individuals, high infection rates drive
the susceptible population to small values, and the disease dies out for large periods of time.
Therefore, we can expect that in mangroves where the crab mortality due to LCD is high, the
disease will take more time to appear again.

In Figure 6 we show the time evolution of the populations for three different infection rates
β. Here, σ = 0.25, and the other parameters are as in Figure 1. The continuous, dashed and dot-
ted lines are susceptible crabs, infected crabs and fungus population, respectively. In (a) with
β = 0.02 (RF < 1) the populations approach the disease-free equilibrium ; in (b) with β = 0.05
(RF > 1) the populations approach the endemic equilibrium; in (c) with β = 0.29 (RF > 1) the
populations have periodic behaviour. In all simulations we have RC > 1, so the trivial equilib-
rium is unstable. Of course, for this parameter set, in case (a), the fungus population goes to
extinction, in (b) it goes to a small value different from zero and in (c) it oscillates around a
small value.

5. Conclusions

The present study represents the first attempt to model LCD, an infectious disease that has dec-
imated populations of the mangrove land crab throughout the Brazilian coast. Little has been
uncovered about LCD to date, despite the severity of the disease and the ecological and economic
importance of its host. For this reason, it is imperative not only to learn the biological aspects of
the disease but also to develop mathematical models to investigate its temporal and spatial dynam-
ics. The use of theoretical models can address the relevance of intrinsic and extrinsic biological
factors on the transmission of the disease, and can also be useful to investigate different scenarios
about its control. The model formulated in the present study captures the essential features of
LCD; in particular, it reproduces the periodic behaviour of LCD observed in several localities of
Northeastern Brazil. The results are given in terms of the basic offspring of the crab, RC , and the
fungus population, RF , as well as the transmission rate β.

The model has three equilibrium points. One corresponds to the absence of the two populations,
and the system evolves to this state when RC ≤ 1 (see Theorem A.1). In nature, this equilibrium
is not feasible because there is larval exchange between the estuaries that would supply new
individuals in each generation. For RC > 1, and RF ≤ 1 solutions approach the disease-free equi-
librium and the disease can be controlled in this case. RF is proportional to the reproductive rate
of fungus σ , which is a measure of the virulence of the pathogen, and to the infectious rate β,
which is a measure of the crab susceptibility to infection. Conversely, RF is inversely proportional
to the fungus’s mortality rate, μF , i.e. proportional to its lifespan. Therefore, the infection can be
controlled, combating fungus population in nature, and/or decreasing the crab susceptibility to the
pathogen. A brief reflection indicates that the first alternative is undesirable, since a substance that
destroy the fungus of LCD probably would affect other fungus which are essential for the balance
of the mangrove ecosystem. Thus, the only viable control is to decrease crab susceptibility to the
pathogen by the introduction of resistant crabs to the affected areas. Efforts in this direction has
been done in Brazil. In particular, research to produce genetically resistant crabs cultivated in
laboratories is developing [18].

The model also predicts that moderate crab capture decreases RF and, depending on the value
of the parameter β, can decrease the probability of disease bursts or increase the probability of
the disease becoming endemic. In the first case, capture reduces the susceptible population below
the threshold value needed to maintain the disease. In the second case, although the disease is
maintained, the number of susceptible is not sufficiently high to produce periodic epidemic peaks.



632 C.P Ferreira et al.

In both cases, the crab population is very close to extinction. We consider that it is necessary to
conduct more studies to understand the influence of the crab capture on the disease dynamics.

When RF > 1, the endemic equilibrium where the disease persists all the time emerges. For
suitable sets of the eight parameters, a Hopf bifurcation occurs, and then the disease dynam-
ics can evolve to an endemic situation or can have an oscillatory behaviour. Therefore, the
model results suggest that oscillations are produced by the interplay of constant demographic and
epidemiological parameters, contrary to the hypothesis that such oscillations are a consequence
of external forcing such as the stress associated with the mating season.

In this work, we chose the infection rate, β, as the bifurcation parameter. We found conditions
(Equation (14)) as well as the neutral surface (Equation (15)) where the endemic equilibrium
goes through a Hopf bifurcation. Using numerical simulations, we obtained the stability regions
of the equilibria and limit cycles for two-dimensional parameter space while the other parameters
remain fixed.

The numerical simulations given in section 4 show that increments of the infection rate β,
and/or fungus reproduction rate σ increase the probability of oscillations as well as their period
(see Figures 1, 5 and 6). Thus, in areas where crabs are more susceptible, or fungus is more
virulent, the occurrence of periodic events with great epidemic peaks is higher. In both cases,
cycles occur because the susceptible population almost disappears after an epidemic episode,
and thereafter the fungus population decreases. When the susceptible population recovers to
a threshold, another epidemic peak occurs, and so on. Conversely, Figure 3 relates increasing
recovery rate γ to an endemic situation. In this case, the model behaves as an SIS model in which
there is always a critical number of susceptibles to maintain the disease, due to the recovery of
infected ones.

It is interesting to note that decreasing the disease mortality rate α below a threshold, or
increasing it, promotes endemic behaviour (see Figure 2). Then, the model conjectures that LCD
gradually becomes endemic in the regions where the disease induces a great mortality.

The lack of genetic structure among crab populations in the Brazilian coast [14,15] reflects the
fact that crab larvae are capable of using ocean currents to disperse for dozens of kilometres from
their native estuaries [3,16], promoting colonization of new estuaries. On the other hand, since
fungus that causes LCD is resistant to ocean salinity, it is possible that its transmission to other
estuaries is due to dispersion. Some numerical simulations have shown that, for small values of
the migration rate, the model dynamics do not change qualitatively. Nevertheless, more studies
are needed to understand the interplay between migration and infection. For this reason, we have
in mind for the future to address this problem.
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Appendix 1. Stability of the trivial equilibrium E0

Theorem A.1 If RC ≤ 1, then all solutions of system (1) in R
3+ approach the trivial equilibrium E0.

Proof Consider the Lyapunov function V = S + I with Lyapunov derivative given by

V̇ =
(

φ − a − φS

C

)
S − (μ + α)I

≤ (φ − a)S − (μ + α)I ≤ 0.

The last inequality holds because RC = φ/a ≤ 1. The Lyapunov-Lasalle Theorem [8] implies that all solutions in R
3+

approach the largest positively invariant subset of M = {(S, I, F ) |V̇(S, I, F ) = 0}. It is clear that V̇ = 0 when S = I = 0.
Then in M system (1) becomes S′ = 0, I ′ = 0, F ′ = − μF F, which implies that F(t) → 0 as t → ∞. Thus, E0 is the only
positively invariant subset of M. Hence, all solutions in R

3+ approach that point. �

Appendix 2. Stability of the disease-free equilibrium E1

Theorem B.1 Assume RC > 1. If R̄F = (βσα(φ − a)C)/((μ + α)μF φ) ≤ 1 then all solutions of Equation (1) in

 = {(S, I, F)|S > 0, I ≥ 0, F ≥ 0} approach the disease-free equilibrium E1.
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Proof Consider the Lyapunov function defined in 
,

U =
(

S − S̄ − S̄ ln
S

S̄

)
+ I + (μ + α)

σα
F.

It can be seen that U > 0 (see [6]) and its Lyapunov derivative is given by

U̇ =
(

S − S̄

S

) (
(φ − a)S − φS2

C
− βSF + γ I

)

+ βSF − (γ + α + μ)I + (μ + α)

σα
(σαI − μF F).

Substituting φ − a = φS̄/C from Equation (2), and simplifying gives

U̇ = − φ

C
(S − S̄)2 − γ S̄

S
I +

(
βS̄ − (μ + α)

σα
μF

)
F

= − φ

C
(S − S̄)2 − γ S̄

S
I − (μ + α)μF

σα
(1 − R̄F )F ≤ 0

for R̄F ≤ 1. It is clear that U̇ = 0 if and only if S = S̄, I = 0, and F = 0. Again, for the Lyapunov-Lasalle Theorem [8]
this implies that all trajectories in 
 approach E1 as t → ∞. �

For RF < 1 and γ sufficiently small, R̄F < 1. Therefore, the result above shows that the LCD can be effectively
controlled if the basic reproductive number of the fungus, RF , is less than one, and the recovery rate of the infected crabs
is nearly zero.




