Aila Guerra Amanda Garlonetti Letícia Dzierva Milena Fontana Casimiro da Costa

AQUARTILHA

Região Centro-Oeste

2016

Aquartilha Guia ilustrado de piscicultura para iniciantes

Aila Guerra Amanda Garlonetti Letícia Dzierva Milena Fontana Casimiro da Costa

Design Vitória Magalhães de Toledo Pimenta

Sumário

1-Glossário	4-5
1.1- Legendas	5
2- Você precisa saber	6-17
2.1- Piscicultura no Brasil	
2.2- Parâmetros de qualidade de água	•
2.3- Regimes de cultivo	
2.4- Hábito alimentar	
2.5- Legislação	
2.6- Principais doenças	
3- Região Centro-Oeste	18-29
3.1-Tambaqui	
3.2- Pacu	
3.3- Pirapitinga	
3.4-Tambacu	
3.5- Tilápia	
3.6- Piraputanga	
3. 7 - Matrinxã	
3.8- Piauçu	
3.9- Curimatã	
3.10- Pintado	
1- Referêncies	39_35

Glossário

- <u>Aerador:</u> é um equipamento mecânico (elétrico ou movido por motores a diesel ou a gasolina) utilizado para aumentar a concentração de oxigênio no viveiro.
- <u>Consórcio</u>: cultivo envolvendo a piscicultura e alguna outra atividade de pecuária.
- <u>Despesca:</u> retirada dos peixes cultivados do viveiro.
- <u>Fitoplâncton:</u> organismos unicelulares em suspensão na coluna d'água. Nesse caso, a parte vegetal do plâncton.
- <u>Híbrido</u>: o termo é referente a um cruzamento entre duas espécies, resultando em um indivíduo geralmente estéril.
- <u>Taxa ou índice de conversão alimentar:</u> é calculada dividindo-se a quantidade total de ração fornecida, pelo ganho de peso dos peixes.
- <u>Zooplâncton:</u> organismos unicelulares em suspensão na coluna d'água. Nesse caso, a parte animal do plâncton.
- <u>Disco de Secchi:</u> possui 20 cm de diâmetro e 4 quadrantes pintados alternadamente nas cores preto e branco. Você o mergulha na água (segurando-o por um cordão) até desaparecer sua visualização, com isso é possível verificar a profundidade.

Legenda

Algumas dessas imagens podem aparecer durante a cartilha, vamos entender:

Hábito alimentar:

Carnívoro

Iliófago

Herbívoro

Onívoro

Temperatura:

Baixa

Média

Alta

Outros:

Doenças

Você precisa saber

Piscicultura no Brasil

A criação de peixes no Brasil foi introduzida pelos holandeses no século XVIII. Mas foi entre os anos de 1960 e 1970 que teve início um modelo de piscicultura popular, implementado a pequenas propriedades com o intuito de complementar a renda familiar. Faziam parte desse modelo a escala de produção muito pequena e o regime de criação extensivo.

Atualmente o cenário da piscicultura no Brasil é promissor, com o mercado amplo e grande potencial de crescimento na área, a atividade tem se tornado uma nova opção de renda.

O clima tropical favorável, a grande reserva de água doce disponível para abastecer os tanques, a enorme quantidade de terras acessíveis para construção e a alta demanda do pescado no mercado, são alguns dos fatores que alavancam a piscicultura. Em 2011 foram produzidas 610mil toneladas de pescado via aquicultura o que o colocou na sua melhor posição no ranking mundial até o momento, no 12º lugar.

Parâmetros de qualida

Na piscicultura, existem diversos fatores físicos, químicos e biológicos que interagem entre si e que são de extrema importância para a sobrevivência dos animais. Sendo assim, condições inadequadas de qualidade da água influenciam diretamente na sobrevivência e qualidade dos peixes cultivados, comprometendo o sucesso da produção.

Alguns deles são:

- <u>Temperatura:</u> é uma medida que existe para medir o quanto algo está "quente" ou "frio", como o ambiente por exemplo.
- Oxigênio dissolvido (OD): ele é indispensável à sobrevivência dos organismos existentes nos viveiros. O oxigênio na água é proveniente do fitoplâncton que depende da luz para realizar a fotossíntese. Os aeradores mecânicos também possuem papel importante nesse parâmetro de qualidade de água, pois aumentam a taxa de entrada de oxigênio no viveiro.
- Transparência: a água não pode ser muito transparente, uma vez que essa transparência indica uma água pobre em nutrientes. Ela também não pode ser muito turva ou barrenta, prejudicando a fotossíntese do fitoplâncton presente no viveiro.

de de água

- pH: se refere à medida que fornece o grau de acidez da água ou basicidade da água, seguindo uma escala de O a 14. Isso se dá levando em conta os íons H + presentes no meio. Quanto maior a quantidade desse íon, menor será o pH, ou seja, mais ácido o meio. Quanto menor essa quantidade, maior será o pH, sendo assim, mais básico (alcalino) o meio.
- <u>Alcalinidade</u>: parâmetro que quantifica a concentração de íons carbonato e bicarbonato existentes na água.
- <u>Dureza:</u> é um parâmetro que representa a concentração de sais de Cálcio (Ca) e Magnésio (Mg) que estão presentes na água. Nas concentrações entre 55 e 200 mg/l de Ca e Mg, pode ser considerada uma água ideal, pois possui a quantidade adequada de sais minerais.
- Amônia: existem duas formas nas quais a amônia é possivelmente encontrada na água: A amônia não ionizada, na forma de gás, e a amônia ionizada ou íon amônio. A forma mais tóxica para os peixes é a gasosa (não ionizada). O equilíbrio entre as duas possui relação entre o pH e a temperatura. Esse parâmetro geralmente é proveniente da decomposição da matéria orgânica, da ração não consumida e dos excrementos dos organismos.

Tabela de frequência

Parâmetro	Frequência de monitoramento	Período
Temperatura	2x por dia	Início da manhã e final da tarde
Oxigênio dissolvido	2x por dia	Início da manhã e final da tarde
pH	3x por semana, ideal 1x por dia	Início da manhã ou final da tarde
Turbidez	1x por dia	Manhã
Transparência	1x por dia	Manhã
Alcalinidade	1x por mês	Ao amanhecer
Dureza	1x por mês	Manhã
Amônia	1x por semana	Final da tarde

Tabela 1. Frequência ideal de monitoramento e períodos mais críticos do dia nos quais costumam ser mais perigosos para os peixes cultivados.

Parâmetro	Equipamento apropriado	Unidade
Temperatura	Termômetro	°C
Oxigênio dissolvido	Oxímetro	mg/L
pН	pHmetro	Faixa de 0 a 14
Turbidez	Turbidímetro	cm
Transparência	Disco de Secchi	cm
Alcalinidade	Kits de análise	mg/L
Dureza	Kits de análise	mg/L
Amônia	Kits de análise	mg/L

Tabela 2. Equipamentos apropriados para o monitoramento e a unidade utilizada para cada parâmetro.

Regimes de cultivo

Existem diferentes regimes de cultivo na piscicultura, cada um possui características e custo de implantação variados. Os principais são:

- Extensivo: é o cultivo em ambientes amplos, sendo açudes, lagos e lagoas. Não havendo a possibilidade de controle da água e apresentando baixa produtividade.

Recomendado para propriedade em que o papel da piscicultura não é a principal atividade, sendo assim secundária.

- Não há fornecimento de ração aos peixes;
- Baixa produtividade;
- É utilizada a técnica de policultivo;
- <u>Semi-intensivo</u>: cultivo de peixes em viveiros de barragem ou de escavação.
- Há fornecimento de alimento;
- Pode haver técnicas de adubação da água;
- Pode haver esvaziamento dos viveiros para fins de manejo e despesca;
- Uso ou não de aeradores mecânicos;
- São utilizadas técnicas de monocultivo ou policultivo.

- <u>Intensivo</u>: esse regime tem por finalidade obter alta produtividade, com fases de recria e engorda bem definidas e alta densidade de estocagem. Com isso, a piscicultura na propriedade é dita como principal atividade.
- Fornecimento de rações balanceadas;
- Aplicações de técnicas de adubação da água;
- Alta frequência do monitoramento dos parâmetros de qualidade de água;
- Uso de aeradores mecânicos;
- Uso de técnica de monocultivo.
- <u>Superintensivo</u>: regime que possui as mesmas características do intensivo, porém pode trabalhar com densidades de estocagem ainda maiores. Para isso, os peixes podem ser cultivados em estruturas específicas como, por exemplo:
- Gaiolas;
- Tanques-rede.

Tipos de cultivo: a piscicultura ainda pode ser classificada quanto ao número de espécies de peixes cultivadas no viveiro:

- Monocultivo: é o cultivo de apenas uma única espécie no viveiro.
- <u>Policultivo</u>: é o cultivo de duas ou mais espécies de peixes com hábitos alimentares distintos no viveiro.

Hábito alimentar

<u>Carnívoros:</u> que se alimentam de outros animais.

Zooplanctófagos: alimentam-se de zooplâncton.

<u>Onívoros:</u> que se alimentam de dois meios tróficos diferentes (podendo ser de origem animal e/ou vegetal).

<u>Herbívoros:</u> que se alimentam de matéria vegetal.

<u>Fitoplanctófagos:</u> alimentam-se de fitoplâncton.

<u>Hiófagos ou detritívoros:</u> são os peixes que revolvem o fundo dos ambientes aquáticos em busca de alimento, estes peixes ingerem lodo, algas, pequenos moluscos, entre outros.

Legislação

As regras gerais para o licenciamento ambiental, conforme definidas na Lei no 6.938/81 – Lei da Política Nacional do Meio Ambiente – e na Resolução CONAMA no 237, de 19 dedezembro de 1997.

Deve-se fazer pedido do direito de outorga de água de acordo com LEI Nº 9.433, DE 8 DE JANEIRO DE 1997. O órgão responsável pela liberação varia de estado pra estado, busque pela secretaria do meio ambiente de seu estado para se informar sobre os procedimentos.

É importante também ter conhecimento:

- PORTARIA nº 145/98, de 29 de outubro de 1998:
- RESOLUÇÃO nº 413, DE 26 DE JULHO DE 2009:
- LEI No 9.605, DE 12 DE FEVEREIRO DE 1998 Lei de crimes ambientais.

Doenças

Com o crescimento e intensificação da piscicultura nacional, houve um aumento de incidência de doenças que acabam se instalando e comprometendo a produção de determinados peixes.

Dentre as principais doenças estão:

• <u>Lerneose:</u> a Lernia (*Lernaea cyprinacea*) é um parasito que se fixa à musculatura do peixe, causa lesões, necrose e pontos hemorrágicos. Além de favorecer o aparecimento de infecções secundárias.

Causa: mortalidade em alevinos e diminui taxa de crescimento e reprodução em peixes adultos.

• <u>Ictiofiríase:</u> causado pelo *Ichtyophthirius multifillis*, ocorre principalmente em locais que sofrem mudanças de temperatura, ou má condição de controle de qualidade de água. Ele parasita a pele e as brânquias, ele "levanta" as células da pele e se torna visível a olho nu. Quando em criações intensivas, ataca principalmente larvas e alevinos.

Causa: Sobre o corpo e nadadeiras formam-se pontos brancos com cerca de 1mm.

• Quilodonelose: causada pelo Chilodonella cyprini, ocorre em quase todas as espécies de água doce. O parasito se movimenta alimentando-se de células na pele do peixe, possui alta ação destrutiva, porém não suporta oscilações de temperatura.

Causa: inflamação na pele, lesões, aumenta secreção de muco, dificuldade respiratória.

Doença causada pelas bactérias Aeromonas hydrophila e Pseudomonas fluorescens: essas bactérias podem ser encontradas tanto no solo, como em águas naturais. Acomete principalmente peixes mal nutridos e com lesões (decorrentes de transporte, por exemplo). Alguns fatores como falta de sanidade e excesso de matéria orgânica no tanque, podem facilitar a ocorrência dessas bactérias.

Causa: perda de apetite, redução de atividade, lesões nas nadadeiras, natação lenta e quadros hemorrágicos.

• <u>Columnariose</u>: (conhecida como doença da cauda comida ou doença da boca de algodão), é causada pelo *Flexibacter columnaris*, essa bactéria se instala em lesões causadas por ferimentos ou parasitos.

Causa: perda de apetite, natação lenta, o peixe geralmente fica isolado dos demais e fica boquejando na superfície, é comum o aparecimento de lesões amareladas e/ou esbranquiçadas ao redor da boca.

• Argulose: (conhecida como piolho de peixe), é causada pelo *Argulus sp*, pode ocorrer em todas as espécies de peixes de água doce. É possível visualizar a olho nu, o que facilita no diagnóstico.

Causa: Irritação e vermelhidão na pele, seguida de descamação. Pode evoluir para úlceras e causar infecções secundárias.

Região Centro-Oeste

Introdução

Formada pelos estados do Goiás (GO), Mato Grosso (MT) e Mato Grosso do Sul (MS) e o Distrito Federal (DF) com uma extensão de 1,61 milhões de km², equivalendo a 18,9% do território nacional. As bacias existentes são a do Prata e do Amazonas, com isso sua localização se torna muito privilegiada para as atividades em relação a piscicultura e aquicultura em geral.

A piscicultura na região se baseia geralmente em propriedades menores do que 2,0 hectares. Mas com a exportação, a região tem apresentado um grande potencial para a expansão desse setor. Devido à diversidade regional de espécies, e a água disponível nos estados, ainda há uma enorme quantidade de locais disponíveis para um grande crescimento da piscicultura na região.

Espécies mais cultivadas:

1º Tambaqui
2º Pacu
3º Pirapitinga
4º Tambacu
5º Tilápia
6º Piraputanga
7º Matrinxã
8º Piauçu
9º Curimatã
10º Pintado

Tambaqui

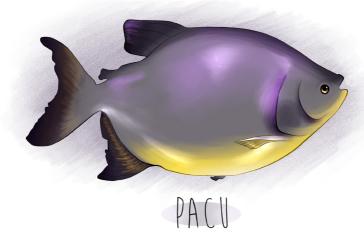
TAMBAQUI

Nome Científico: Colossoma macro-pomum

Distribuição Geográfica: bacia Amazônica.

Características Produtivas: peixe rústico apresentando bom crescimento e excelente qualidade de carne, porém não suporta frio (alta taxa de mortalidade abaixo de 15°C).

Crescimento: o tambaqui apresenta crescimento rápido, atingindo facilmente 1,5kg em um ano de cultivo.


27 a 30°C

pH ideal da água: 6 a 7.

O tambaqui se destaca por ser um peixe com boa capacidade de adaptação à baixos valores de pH.

Pacu

Nome Científico: Piaractus mesopotamicus.

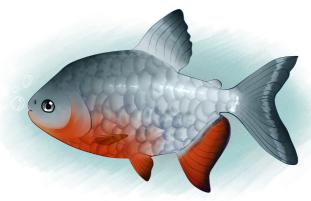
Distribuição Geográfica: nativo da Bacia Paraguai.

Crescimento: pode alcançar cerca de 50 cm de comprimento total. No primeiro ano de cultivo pode ultrapassar 1,1kg.

pH ideal da água: 6 a 8.

Transparência da água: 25 a 45 cm.

Oxigênio dissolvido: mínimo 1,5 mg/L.


Vem sendo muito utilizada na piscicultura e para a formação do híbrido Tambacu em cruzamento com o Tambaqui.

20 a 30°C

Pirapitinga

PIRAPITINGA

Nome Científico: Piaractus brachypomus.

Distribuição Geográfica: nativa das bacias são Francisco, Paraguai, Alto Paraná.

Apresenta boa aceitação do mercado devido ao sabor da carne.

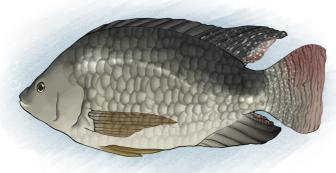
Tambacu

TAMBACI

Nome Científico: Colossoma macropomum + Piaractus mesopotamicus

Distribuição Geográfica: é uma espécie exótica

Alimentação: Somente em cultivo, com ração.


pH ideal da água: 6 a 8

Transparência da água: 25 a 45 cm 28 a 30°C

Oxigênio dissolvido: 1,5 mg/l

É um peixe híbrido, resultado do cruzamento induzido entre fêmea de Tambaqui e macho de Pacu. Seu desempenho é superior, é mais resistente ao frio e apresenta menores índices de gordura quando comparado às espécies Tambaqui e Pacu, das quais descende.

Tilápia

TILÁPIA DO NILO

Nome Científico: Oreochromis niloticus.

Distribuição Geográfica: é uma espécie exótica.

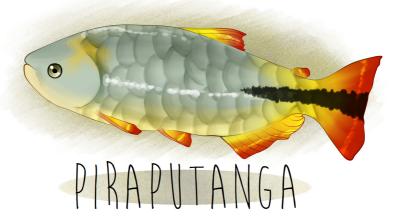
Crescimento: pode atingir 45 cm de comprimento e 2,5 kg de peso. Sendo que, o macho apresenta maior ganho de peso e melhor conversão alimentar quando comparado com a fêmea.

pH ideal da água: 6 e 8.

Transparência da água: 25 a 45 cm

Oxigênio dissolvido: 0,8 mg/L.

Apresenta boa resistência a baixas concentrações de OD.


Resistência a doenças, facilidade de manejo e cultivo, tolerância a amplas variações ambientais.

26 a 32°C

Piraputanga

Nome Científico: Brycon microlepis.

Distribuição Geográfica: nativa das bacias do Paraná e Paraguai.

pH ideal da água: 6,5 a 7,2

Oxigênio dissolvido: 2mg/l

25 a 28°C

Matrinxã

Nome Científico: Brycon cephalus

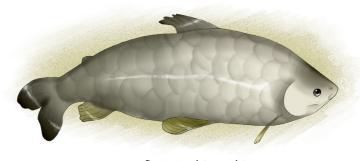
Distribuição Geográfica: nativa da bacia Amazônica

Características produtivas: apresenta bom desempenho em cativeiro,

Crescimento: o Matrinxã pode chegar à 1,2 kg em um ano.

pH ideal da água: 6 a 8.

Transparência da água: Entre 25 e 35 cm.


18 a 30°C

Oxigênio dissolvido: 2 mg/L . Boa resistência a concentrações menores.

Existem relatos de canibalismo nesta espécie.

Piauçu

Nome Popular: Piauçu ou Piavuçu Nome Científico: Leporinus macrocephalus

Distribuição Geográfica: nativo da bacia do Alto Paraná, Araguaia/Tocantins

Crescimento: se bem alimentado, o Piauçu pode chegar ao primeiro ano de vida com 1 a 1,2 quilo de peso.

pH ideal da água: 6 a 8.

Oxigênio dissolvido: 2mg/L.


18 a 30°C

Transparência: 25 a 45 cm.

Pode ser criado como peixe ornamental.

Curimatã

CURIMATÃ

Nome Popular: Curimbatá (também conhecido como Curibatá, Curimatá, Curimata, Curimataú, Curimba, Curumbatá e Crumatá.)

Nome Científico: Prochilodus lineatus

Distribuição Geográfica: nativo da bacia do Alto Paraná

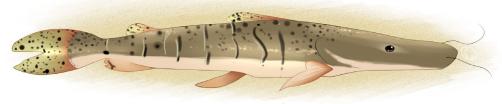
Crescimento: pode alcançar 30cm de comprimento e atingir 450 gramas.

pH ideal da água: 6 a 8.

Oxigênio dissolvido: lmg/L.

Transparência: 25 a 45 cm.

?


Sua carne apresenta um ligeiro sabor de terra, em razão de seu hábito alimentar iliófago. Em geral é utilizado no policultivo para remover o lodo do tanque e ajudar a adubar os tanques

Pintado

PINTADO

Nome Popular: Pintado, Surubim Caparari, Moleque, Brutelo e Caparari.

Nome Científico: Pseudoplatystoma corruscans

Distribuição Geográfica: com maior importância no Pantanal e na Bacia do Rio São Francisco

Crescimento: cresce de 1 até 2 quilos num período de um ano até 14 meses.

pH ideal da água: 6 a 8.

22 a 28ºC

Informações Comerciais: boa aceitabilidade tanto pelo sabor e valor nutricional, quanto pelo baixo número de espinhas.

É um peixe de couro, ou seja, não possuem escamas.

Anotações

Anotações

ABIMAQ. Solução Técnica; Criação de Peixe. Agosto de 2009. Disponível em: http://www.datamaq.org.br/sebrae/Article.as-px?entityId=daa69d2c-6d87-de11-8bd0-0003ffd062a1.

AMBIENTE BRASIL. Pirapitinga – Piaractus brachypomus. Disponível em: http://ambientes.ambientebrasil.com.br/agua/pesca_esportiva_em_agua_doce/pirapitinga_-_piaractus_brachypomus.html.

ATIVIDADE RURAR. Peixes - doenças e parasitoses. Disponível em:

http://www.atividaderural.com.br/artigos/4fc63b04361a4.pdf.

BOYD, C. Manejo do Solo e da Qualidade da Água em Viveiro para Aquicultura. Tradução: Eduardo Ono. São Paulo. 1997.

CAMARGO, J. Saiba quais são os custos e tratos necessários para a criação de tilápias.

Canal Rural. Paraíbuna - SP. Novembro, 2014.

CURSOS CPT. Peixes de água doce do Brasil – Pirapitinga (Piaractus brachypomus). Disponível em: http://www.cpt.com.br/artigos/peixes-de- agua-doce- do-brasil- pirapitinga- piaractus-brachypomus.

CURY, M. X. Cultivo de Pintado e Cachara. Panorama da Aquicultura, n.13, ago/set. 1992. Disponível em: http://www.panoramadaaquicultura.com.br/paginas/revistas/13/Pintado.asp.

FERNANDES, J. B. K. Aquicultura. Sistemas de produção de peixes. Publicado em março de 2010. Disponível em: http://www.diadecampo.com.br/zpublisher/materias/Materia.asp?i-d=21315&secao=%20Colunas%20Assinadas.

GOMES, C. L. Matrinxã: Sistema Semi-intensivo para criação de larvas. Panorama da Aquicultura, n.45, jan/fev. 1998. Disponível em: http://www.panoramadaaquicultura.com.br/paginas/Revistas/45/matrinxa.asp.

INSTITUTO DE PESCA. Principais atrações. Disponível em: http://www.pesca.sp.gov.br/atracoes_aquario.php.

KUBITZA, F. Panorama da Aquicultura no Brasil: Particularidades regionais da piscicultura – Parte III. Disponível em: http://www.panoramadaaquicultura.com.br/novosite/?p=1755.

KUBITZA, F. Qualidade da água na produção de peixes – Parte I, II e III. Panorama da Aquicultura, vol.8, n.45; 46 e 47, jan/fev a mai/jun. 1998.

KUBITZA, F.; KUBTIZA L.M.M. Tilápias: Qualidade de água, sistemas de cultivo, planejamento da produção, manejo nutricional e alimentar e sanidade. Parte I. Revista Panorama da Aquicultura. nº 59 maio/junho 2000. Disponível em: http://www.panoramadaaquicultura.com.br/paginas/Revistas/59/Tilapias59.asp.

KUBTZA, F. Panorama da Aquicultura no Brasil parte I Estatísticas, espécies, pólos de produção e fatores limitantes a expansão da atividade. Disponível em: http://www.panoramadaaquicultura.com.br/novosite/?p=1982.

LEVSHIN, L. Tilápias Nilóticas ou vermelhas? Revista Panorama da Aquicultura. nº 61 setembro/outubro 2000. Disponível em: http://www.panoramadaaquicultura.com.br/paginas/Revistas/61/TILAPIA.asp.

MANIA DE AQUÁRIO. Piraputanga. Disponível em: http://maniadeaquario.blogspot.com.br/origem-america- do-sul- comprimento_11.html.

MARQUES, H. L.; VARGAS L.; RIBEIRO, R. P.; ZIMMER-MANN, S. Fundamentos da Moderna Aquicultura. Canoas: Ed. ULBRA, 2001. 200 p.

NUTRIER ALIMENTOS. Guia de espécies cultiváveis. Disponível em: http://nutrieralimentos.com.br/guia-de-especies-cultivaveis.php.

OLIVEIRA, R. Criação de tilápias - sistemas de produção extensivo, semi-intensivo, intensivo e superintensivo. Cursos Piscicultura. Disponível em: http://www.cpt.com.br/cursos-criacaodepeixes/artigos/criacao- de-tilapias- sistemas-de-producao-extensivo- semi-intensivo- intensivo-e- superintensivo.

OSTRENSKY, A.; BOEGER, W. Piscicultura: Fundamentos e Técnicas de manejo. Guaíba: Ed. Agropecuária. 1998.

PANORAMA DA AQUICULTURA. Coletânea de informações aplicadas ao cultivo de Tambaqui, do Pacu e de outros peixes redondos. Disponível em: http://www.panoramadaaquicultura.com.br/paginas/Revistas/82/redondos82.asp.

PANORAMA DA AQUICULTURA. Principais Parasitoses e Doenças em Tilápias. Disponível em: http://www.panoramadaa-quicultura.com.br/paginas/revistas/60/doencas.asp.

PEIXEFAUNA. O que é a argulose, ou piolho de peixe? Disponível em: http://www.peixefauna.com/t14194-argulose-piolho-da-carpa.

PESCA E COMPANHIA. Curimbatá. Disponível em: http://revistapescaecompanhia.com.br/fique-por- dentro/noticias/curimbata.

PET Agronomia & DET Engenharia Agrícola (Universidade Federal de Lavras) UFLA/MG Programa para redução do impacto ambiental causado pela reversão sexual em tilápias (Oreochromisniloticus). Disponível em: http://www.enapet.ufsc.br/anais/PROGRAMA_PARA_REDUCAO_DO_IMPACTO_AMBIENTAL_CAUSADO_PELA_REVERSAO_SEXUAL_EM_TILAPIAS_Oreochromis_niloticus.pdf.

PROJETO PACU. Alevinos e larvas; Tambacu. Disponível em: http://www.projetopacu.com.br/alevinos/?view_mode=listagem&detail=12

REVISTA GLOBO RURAL. Aquicultura brasileira soma 15,5 mil produtores e cultiva 77 espécies. Disponível em: http://revistagloborural.globo.com/Revista/Common/0,,E-MI342703-18530,00-AQUICULTURA+BRASILEIRA+-SOMA+MIL+PRODUTORES+E+CULTIVA+ESPECIES. html.

REVISTA GLOBO RURAL. Como criar Piauçu. Disponível em: http://revistagloborural.globo.com/vida-na-fazenda/co-mo-criar/noticia/2014/11/como-criar-piaucu.html.

ROCHA, A. Piscicultura: Tambacu oferece excelentes condições de criação e bom mercado. Portal Agropecuário. 2013. Disponível em: http://www.portalagropecuario.com.br/pisicultura-2/piscicultura- tambacu-oferece-excelentes-condicoes-de-criação- e-bom- mercado.

SAMPAIO, A. R.; BASTOS, J. M. G; Piscicultura. Formação para o trabalho. Fundação Demócrito Rocha. Fortaleza, 2013.

SCHMITT, C. R.; SILVA, J. A. Produção de Pacu (Piaractus mesopotamicus) em Tanque –Redes. Universidade Federal do Piauí – UFPI. Bom Jesus, PI, Outubro de 2010.

SNATURAL. Peixes - doenças e parasitoses. Disponível em: http://www.snatural.com.br/Peixe-Doencas.html.

TRISTÃO, P. Como criar Pacus e Tambaquis. Portal Agropecuário. 2010. Disponível em: http://www.portalagropecuario.com.br/pisicultura-2/criar-pacus-tambaquis.

Equipe Aquartilha