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The control region (CR) is the largest noncoding segment of
the mitochondrial DNA and includes the major regulatory
elements for its replication and expression. In addition, the
high level of intraspecific genetic variability found in the CR
favors its use in phylogeographical and population genetic
studies of a variety of organisms. However, most of the
work on the structure of the CR has focused on vertebrates
and insects, and little is known about the evolution of the CR
in other taxa. In this study, we sequenced the entire CR of
several individuals of 2 crab species: Ucides cordatus
(Ocypodidae) and Cardisoma guanhumi (Gecarcinidae).
There were neither large conserved regions in the CR of
either species nor any similarity among species at
the nucleotide level. However, the spatial pattern of
genetic variability on the CR was similar among species. In
addition, interesting similarities were found in the formation
of stable secondary structures and in the position of
regulatory elements. These results indicate that the
evolution of CR in crustaceans is a remarkably dynamic
process, with most homology among species being found at
the secondary level.

The control region (CR) of the mtDNA, often called D-
loop in vertebrates and ‘‘A þ T’’–rich region in inverte-
brates, contains the major regulatory elements for the
replication and expression of the mitochondrial genome
(Shadel and Clayton 1997). This region is characterized by
an extraordinarily dynamic evolution. For instance, CR size
in insects can range from 0.35 kb in butterflies (Taylor et al.
1993) to 13 kb in bark weevils (Boyce et al. 1989). The
structure of the CR is also variable among animal groups. In

mammals and birds, the CR is organized into 3 major

regions, or domains, including the extended terminal

associated sequence (ETAS), central, and conserved se-

quence block domains (e.g., Sbisà et al. 1997; Randi and

Lucchini 1998; Matson and Baker 2001). However, such an

organization is not shared by all vertebrate groups (e.g.,

Brehm et al. 2003). In insects, on the other hand, there seem

to be 2 main types of CRs (Taylor et al. 1993; Zhang et al.

1995; Zhang and Hewitt 1996; Vila and Björklund 2004):

Group 1, where a conserved domain is followed by

a variable domain, is found in fruit flies, and Group 2,

found in grasshoppers, locusts, butterflies, and mosquitoes,

is characterized by a lack of distinct conserved regions.
Surprisingly, little is known about the structure of the CR

in crustaceans. Grabowski and Stuck (1998) described the

CR of the shrimp Farfantepenaeus duorarum with respect to its

size, base composition, and the presence of 7–12 short

repetitive sequences. Also, Diniz et al. (2005) studied the

variability pattern and the base composition of the hyper-

variable region of the CR of the spiny lobster (Panulirus

argus) to investigate its usefulness in phylogeographical

studies. Finally, Kilpert and Podsiadlowski (2006) identified

2 sections with repetitive sequences in the isopod Ligia

oceanica. The first consists of a series of 4 completely

matching sequences of 10 bp extending into the adjacent

tRNA, whereas the second section is formed by a consec-

utive triplicate 64-bp segment. No similarities were found

between these sequences and any other mitochondrial gene.

In addition, the position of the regulatory elements in

L. oceanica indicates that the CR might have been inverted

during the evolution of isopods.
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In this study, we sequenced the entire CR of several
individuals of 2 crab species: Ucides cordatus (Ocypodidae)
and Cardisoma guanhumi (Gecarcinidae). Intra- and interspe-
cific comparisons were used to describe the organization of
the CR in these species as well as to search for possible
structural similarities between them.

Materials and Methods

Samples of U. cordatus were collected in the Guaratuba bay,
State of Paraná, Southern Brazil (25�50#14$S,
48�35#20$W), and samples of C. guanhumi were obtained
in a local market in Aracaju, State of Sergipe, Northeastern
Brazil (10�59#06$S, 37�04#24$W). Muscle tissue from one
of the pereiopods of each specimen was removed, preserved
in ethylenediaminetetraacetic acid–dimethyl sulfoxide buffer
(Seutin et al. 1991), and maintained at �20 �C. Genomic
DNA was extracted using the DNeasy kit (Qiagen, Valencia,
CA) according to the manufacturer’s instructions. The
primers 12SUCAF3 (5#-CCA GTA NRC CTA CTA TGT
TAC GAC TTA T-3’) and ILEUCAR3 (5#-GCT AYC CTT
TTA AAT CAG GCA C-3’) were used for the amplification
of a �1.6-kb fragment including the complete CR (Oliveira-
Neto et al. forthcoming). Each 25-ll polymerase chain
reaction (PCR) included the following final concentrations:
6 mM of MgCl2, 0.25 mM of each dNTP, 0.1 U/ll of Taq
polymerase, 1� de buffer, 2 lM of each primer, and 1.2
ng/ll of template DNA. Thermocycling conditions in-
cluded an initial denaturation at 95 �C for 2 min, followed by
35 cycles of 95 �C for 20 s, 55 �C for 30 s, and 72 �C for 90 s,
and a final extension at 72 �C for 2 min. A 2-ll aliquot of each
PCR product was electrophoresed in a 1.5% agarose gel,
stained with ethidium bromide and visualized under ultra-
violet light. Successfully amplified products were purified
using a MinElute kit (Qiagen). Cycle sequencing in 10-ll
solutions included the following final concentrations: 5 ng/ll
of template DNA, 0.16 lM of primer, 0.15� of reaction
buffer, and 0.5 ll of BigDye (Applied Biosystems, Foster
City, CA). The final product was purified using Sephadex G50
and processed on an ABI3130 automatic sequencer. Forward
and reverse strands were reconciled using the Staden package
(Staden 1996). Five and 10 individuals were sequenced for
U. cordatus and C. guanhumi, respectively. Sequences were
aligned using ClustalX (Thompson et al. 1997), followed by
visual inspection of the resulting alignments. All sequences
were deposited in GenBank (accession numbers EU573697-
EU573701, EU573687-EU573696). The limits of the CR
were determined based on the genome of Portunus tritubercu-
latus, the most closely related crustacean for which the
complete mitochondrial genome has been characterized
(Yamauchi et al. 2003).

Variation in the level of conservation along each
studied alignment was obtained as an entropy function of
nucleotide variation using the following equation:
Var 5�

P
i 5a; c; t ; g ni

N
lnni

N
; where ni 5 the numbers of

each nucleotide (G, A, C, T, or U) in a column of the
alignment and N 5 total number of sequences analyzed, as

implemented in the software SWAN (Proutski and Holmes
1998). The entropy function was calculated in a 10-bp sliding
window along the studied fragment. The used window size is
arbitrary, but the qualitative results are robust, even if different
window sizes are used (data not shown). The most
appropriate model of molecular evolution for the CR of each
species was estimated using the software Modeltest 3.7,
followed by hierarchical comparisons using the Akaike
Information Criterion (Posada and Crandall 1998). Tandem
repeat sequences, which might indicate the presence of
regulatory elements, were searched using the software MREPS
(Kolpakov et al. 2003). In addition, secondary structures and
folding energies were determined using the software Mfold
(Zucker 2003). Finally, potential promoter elements were
searched using Proscan version 1.7 (Prestidge 1995).

Results and Discussion

Alignments of the obtained CR sequences of U. cordatus and
C. guanhumi are shown in Figures 1 and 2, and a description
of their basic features is shown in Table 1. There is a bias
against G in both species, as commonly found in vertebrates
(Wolstenholme 1992). Comparisons of the likelihood scores
of alternative models using Modeltest indicated the need for
fairly complex models to describe the evolution of the CR in
either species. The best model for C. guanhumi was TIM þ I þ
C using the following parameters: base 5 (0.4300, 0.1449,
0.0854), Nst 5 6, Rmat 5 (1.0000, 18.8797, 0.2125, 0.2125,
8.4991), rates 5 gamma, shape 5 0.5148, pinvar 5 0.6374,
whereas the best model for U. cordatus was TIM þC using the
following parameters: base 5 (0.3968, 0.1617, 0.0694), Nst 5
6, Rmat 5 (1.0000, 11.8967, 0.1320, 0.1320, 6.0735), rates 5
gamma, shape 5 0.1245, pinvar 5 0. Average distances
among CR haplotypes using those models were 0.049 ± 0.013
and 0.074 ± 0.019 (mean ± standard deviation) for C.

guanhumi and U. cordatus, respectively. These levels are more
than 60% higher than those estimated from uncorrected
average pairwise distances (0.031 and 0.044, respectively) or
using a simple model of sequence evolution such as the K2P
(0.032 and 0.046, respectively). Thus, the evolution of the CR
cannot be described by such a simple model of sequence
evolution, as commonly observed in phylogeographical
studies, at the risk of severely underestimating molecular
distances.

There was considerable nucleotide variation along the CR
in both species (Figure 3), yet without forming a distinct large
conserved region as observed in the Group 1—type of CR
found in fruit flies, where a conserved domain is followed by
a variable domain. However, a few smaller conserved regions
could be seen throughout the alignment (Figures 1 and 2).
Interestingly, there was considerable concordance in the
spatial pattern of sequence variability between U. cordatus and
C. guanhumi (Figure 3), even though an alignment of the
conserved sequences of both species failed to detect any
significant similarity between them, even when only the
regions that are conserved intraspecifically were compared.
This conclusion is supported by a Spearman’s rank-order
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correlation between the variability levels between both
species (as measured by the entropy function) and found it
to be highly significant (Rs 5 0.427, P , 0.001). This result
indicates that U. cordatus and C. guanhumi might share similar
CR organization at the level of its secondary structure despite
little correspondence at the nucleotide level.

Several candidate common regulatory motifs were found
in both species. These include a polythymine stretch near
the tRNAIle gene, which is often associated with DNA
replication origins and transcriptional activators (see Campbell
1986; Delucia et al. 1986). The CR ofC. guanhumi also included
a (TA)5, which is absent from U. cordatus sequences. Finally,
a common modular element for most promoters, the
ATATAA box, is repeated 2 times in U. cordatus and 3 times
in C. guanhumi, with 2 such motifs being present before the
conserved region.

There is a TCCC termination motif within the large
hairpin of C. guanhumi (see below), mapping at nt 345–348.

This motif is common in vertebrate CRs (e.g., Randi and
Lucchini 1998) and has been associated experimentally with
the termination of H strands (Dufresne et al. 1996). Given
that it is the only occurrence of this motif in the CR of
C. guanhumi, it might indeed play that role in this species.
However, this motif is absent from the corresponding
position in U. cordatus; rather, it maps at nt 747–750 at the
end of the CR in that species, downstream of the
polythymine stretch. Therefore, the interpretation of the
functional role of TCCC motif in the studied species is still
uncertain. On the other hand, several conserved motifs that
are widespread among vertebrates were absent from either
studied species. These include GYRCAT, commonly found
in mammalian and bird ETAS1 (Randi and Lucchini 1998;
Brehm et al. 2003) and tandem repeats at the end of the
3’ end of the CR (Brehm et al. 2003). An important caveat is
that the identification of candidate motifs is inherently
tentative until experimental studies are carried out on the

Figure 1. Aligned nucleotide sequences of the CR of Ucides cordatus. Dots indicate identification of the corresponding

nucleotides to the reference (top) sequence; dashes indicate indels. Stem and loop regions are surrounded by a black box, and

motifs are shown in boldface and surrounded by a gray box.
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Figure 2. Aligned nucleotide sequences of the CR of Cardisoma guanhumi. Dots indicate identification of the corresponding

nucleotides to the reference (top) sequence; dashes indicate indels. Stem and loop regions are surrounded by a black box, and

motifs are surrounded by a gray box.
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CR function in brachyuran crustaceans, particularly because
the candidate motifs are different among the studied species.

The lack of CR sequence conservation between
C. guanhumi and U. cordatus might raise concerns over
whether the studied fragment is in fact the result of
a cytonuclear transfer of mitochondrial DNA and not of
mitochondrial origin. There are several reasons to believe
that such artifact is not the case in our study. First, if
mutations accumulated at such a high rate as to obscure
interspecific similarities in CR, they should also have
eliminated both the concordant variability patterns along
the studied fragments and the similar secondary structures
(see below). Moreover, the flanking 12S region showed
minimal sequence divergence among individuals of the same
species, suggesting that this region is indeed functional.
Finally, a fragment of the CR of both species has been
sequenced for more than 200 specimens in a comprehensive
study on their comparative phylogeography and evolution-
ary demography along the Brazilian coast, providing results
that were biologically meaningful (Oliveira-Neto JF, Boeger
WO, Pie MR, unpublished results). This combined evidence
strongly suggests that the studied fragments are indeed the
CR of the studied species.

A conserved stem and loop (hairpin) structure was
identified at the central region of the CR, with similar
morphologies and folding energies (Figure 4). The central
region of the CR is conserved intraspecifically in both

species (Figure 3), although there is little interspecific
correspondence between the nucleotide sequences in those
regions. These results indicate that variation in the sequence
level can be compensated by specific CR configurations or
that novel nucleotide sequences (or protein factors) can
provide the same function in different species (Shadel and
Clayton 1997).
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Figure 3. Pattern of sequence variability in the studied

alignments of Ucides cordatus and Cardisoma guanhumi based on

a 10-bp sliding window.

Figure 4. Putative secondary structures associated with

conserved region segments. See text for details.

Table 1. Basic features of the studied sequences

Ucides cordatus Cardisoma guanhumi

A 39.7 (39.2–40.4) 43.5 (42.8–44.5)
G 6.9 (6.6–7.3) 8.3 (7.5–8.9)
C 16.0 (15.5–16.7) 14.6 (14.0–15.0)
T 37.4 (16.8–38) 33.7 (33.1–34.4)
Size (bp) 753.4 (751–756) 652.0 (651–653)

Values are shown as averages (%), followed by their respective ranges (%)

in parentheses.
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